skip to main content


Search for: All records

Creators/Authors contains: "Mahmud, Md"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen species present in the atmosphere, soil, and water play a vital role in ecosystem stability. Reactive nitrogen gases are key air quality indicators and are responsible for atmospheric ozone layer depletion. Soil nitrogen species are one of the primary macronutrients for plant growth. Species of nitrogen in water are essential indicators of water quality, and they play an important role in aquatic environment monitoring. Anthropogenic activities have highly impacted the natural balance of the nitrogen species. Therefore, it is critical to monitor nitrogen concentrations in different environments continuously. Various methods have been explored to measure the concentration of nitrogen species in the air, soil, and water. Here, we review the recent advancements in optical and electrochemical sensing methods for measuring nitrogen concentration in the air, soil, and water. We have discussed the advantages and disadvantages of the existing methods and the future prospects. This will serve as a reference for researchers working with environment pollution and precision agriculture. 
    more » « less
  2. Sensor networks and IoT systems have been widely deployed in monitoring and controlling system. With its increasing utilization, the functionality and performance of sensor networks and their applications are not the only design aims; security issues in sensor networks attract more and more attentions. Security threats in sensor and its networks could be originated from various sectors: users in cyber space, security-weak protocols, obsolete network infrastructure, low-end physical devices, and global supply chain. In this work, we take one of the emerging applications, advanced manufacturing, as an example to analyze the security challenges in the sensor network. Presentable attacks—hardware Trojan attack, man-in-the-middle attack, jamming attack and replay attack—are examined in the context of sensing nodes deployed in a long-range wide-area network (LoRaWAN) for advanced manufacturing. Moreover, we analyze the challenges of detecting those attacks. 
    more » « less
  3. With the availability of data and computational technologies in the modern world, machine learning (ML) has emerged as a preferred methodology for data analysis and prediction. While ML holds great promise, the results from such models are not fully unreliable due to the challenges introduced by uncertainty. An ML model generates an optimal solution based on its training data. However, if the uncertainty in the data and the model parameters are not considered, such optimal solutions have a high risk of failure in actual world deployment. This paper surveys the different approaches used in ML to quantify uncertainty. The paper also exhibits the implications of quantifying uncertainty when using ML by performing two case studies with space physics in focus. The first case study consists of the classification of auroral images in predefined labels. In the second case study, the horizontal component of the perturbed magnetic field measured at the Earth’s surface was predicted for the study of Geomagnetically Induced Currents (GICs) by training the model using time series data. In both cases, a Bayesian Neural Network (BNN) was trained to generate predictions, along with epistemic and aleatoric uncertainties. Finally, the pros and cons of both Gaussian Process Regression (GPR) models and Bayesian Deep Learning (DL) are weighed. The paper also provides recommendations for the models that need exploration, focusing on space weather prediction. 
    more » « less
  4. During periods of rapidly changing geomagnetic conditions electric fields form within the Earth’s surface and induce currents known as geomagnetically induced currents (GICs), which interact with unprotected electrical systems our society relies on. In this study, we train multi-variate Long-Short Term Memory neural networks to predict magnitude of north-south component of the geomagnetic field (| B N |) at multiple ground magnetometer stations across Alaska provided by the SuperMAG database with a future goal of predicting geomagnetic field disturbances. Each neural network is driven by solar wind and interplanetary magnetic field inputs from the NASA OMNI database spanning from 2000–2015 and is fine tuned for each station to maximize the effectiveness in predicting | B N |. The neural networks are then compared against multivariate linear regression models driven with the same inputs at each station using Heidke skill scores with thresholds at the 50, 75, 85, and 99 percentiles for | B N |. The neural network models show significant increases over the linear regression models for | B N | thresholds. We also calculate the Heidke skill scores for d| B N |/dt by deriving d| B N |/dt from | B N | predictions. However, neural network models do not show clear outperformance compared to the linear regression models. To retain the sign information and thus predict B N instead of | B N |, a secondary so-called polarity model is utilized. The polarity model is run in tandem with the neural networks predicting geomagnetic field in a coupled model approach and results in a high correlation between predicted and observed values for all stations. We find this model a promising starting point for a machine learned geomagnetic field model to be expanded upon through increased output time history and fast turnaround times. 
    more » « less
  5. Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging.

     
    more » « less